Quantcast
Channel: Models Of Reality » Statistics In Science
Viewing all articles
Browse latest Browse all 3

Every Scientific Hypothesis is a Hypothesis on a Finite Sample Space

0
0

From the p-value debate at Andrew Gelman's blog:

For every measurement of the macroscopic universe that will ever be performed by humans, that measurement will have some resolving power. Let’s pretend that the highest resolving power will come from an electronic A/D converter of some measurement instrument yet to be devised, and that it has 256 bits of resolving power. Today, very high quality A/D converters have maybe 31 bits

http://www.ti.com/lit/ds/symlink/ads1281.pdf

So under this hypothesis that the best ever measurement instrument will have 256 bits of resolving power, any scientific hypothesis involving sample spaces larger than 2^256 different possible finite outcomes is not a testable scientific hypothesis. PERIOD.

Now, let’s examine some physical reality of the universe: according to Wikipedia current approximate calculations give the number of protons/electrons in the universe as around 10^80

This means to have my hypothetical 256 bit A/D converter we would have to accurately count all the electrons in approximately 1/1000 of the entire universe. I assert that this will never occur, so every probability sample space on scientific measurements has less than 2^256 distinct discrete possible outcomes, each distinct outcome has a perfectly ordinary probability associated to it.

Continuous probability distributions are purely convenience for not having to work with an exactly known quantity of discrete outcomes, and not having to carry around sums that contain 2^15 terms and soforth.

Perhaps I'm wrong, perhaps some day we'll have a measurement which is accurate to 1 part in 2^257, the argument still survives. The exact number doesn't matter, its some big finite number. This is exactly why I love the nonstandard analysis of Edward Nelson (IST) because it's all about assigning a predicate to "bigger than we'll ever actually define, but still finite". Integrals are big finite sums, very big, extremely big, bigger than you'll ever actually define if you write towers of 10^{10^{10^{...}}} for the rest of the existence of the human race. It's big enough eventually.

 


Viewing all articles
Browse latest Browse all 3

Latest Images

Trending Articles





Latest Images